CJC 1295 – 5MG

$40.00

Category

Description

CJC-1295

CJC-1295 researched for their proposed affinity for receptors in the pituitary gland and other parts of the central nervous system. Despite activating different receptors, CJC-1295 may exhibit similar action.

CJC-1295 is a molecule that appears to bind to the growth hormone-releasing hormone (GHRH) receptors, which may cause the release of growth hormone by pituitary cells. CJC-1295 is derived from GHRH 1-29, the shortest functional sequence of GHRH consisting of the first 29 amino acids. CJC-1295 is a tetrasubstituted version of the peptide that is also modified by adding a drug affinity complex (DAC) component called N-epsilon-3-maleimidopropionamide, which appears to bind to plasma proteins and may improve CJC-1295 pharmacokinetics.

CJC-1295 Specifications

MOLECULAR FORMULA: C152H252N44O42

MOLECULAR WEIGHT: 3647.954 g/mol

SEQUENCE: H-Tyr-D-Ala-Asp-Ala-Ile-Phe-Thr-Gln-Ser-Tyr-Arg-Lys-Val-Leu-Ala-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Leu-Ser-Arg-Lys(Mal)-NH2

PUBCHEM: CID 56841945

OTHER: DOES NOT CONTAIN DAC

CJC-1295

CJC-1295: THE PITUITARY
CJC-1295 appears to have a similar affinity to pituitary cells, specifically to their GHRH receptors, as native GHRH. Studies comment that when the peptide was “selected for further pharmacokinetic evaluation, … it was found to be present in plasma beyond 72 h.”[1] It may therefore exhibit improved pharmacokinetics compared to GHRH. Further, the peptide may exhibit increased potential for upregulating the synthesis of growth hormone by somatotroph cells. More specifically, CJC-1295 appears to stimulate a 4-fold higher growth hormone secretion (measured as area under the curve) compared to other GHRH receptor agonists such as GRF1–29. The CJC-1295 may exert these actions by possibly attaching to and activating the GHRH receptor. The peptide possibly binds to specific sites on the GHRH receptor protein, potentially causing conformational changes. These changes may activate intracellular signaling proteins called G-proteins, possibly located on the inner side of the GHRH receptor.[2] This may stimulate the production of second messengers like cAMP and IP3 (inositol trisphosphate), which could propagate the signal within the cell and possibly activate protein kinases that may phosphorylate target proteins and regulate cellular processes.[3] Protein kinases may possibly impact transcription factors involved in gene expression that enter the nucleus, and potentially modulate the transcription of genes associated with growth hormone synthesis and secretion. Ultimately, the binding of CJC-1295 may trigger molecular events that result in the fusion of secretory vesicles containing growth hormone with the plasma membrane, possibly releasing growth hormone outside pituitary cells. Researchers commented that when CJC-1295 is introduced to pituitary cells, “basal (trough) GH levels were markedly increased (7.5-fold; …) and contributed to an overall increase in GH secretion (mean GH levels, 46%; …) and IGF-I levels (45%; …).”[4]

CJC-1295: IGF-1 PRODUCTION
By interacting with growth hormone production, CJC-1295 may upregulate IGF-1 (insulin-like growth factor-1) levels which is considered to be a major anabolic mediator of growth hormone. Even brief exposure to CJC-1295 in animal test models appears to impact mean plasma growth hormone concentrations, with research studies indicating a rise by 2- to 10-fold for 6 days or potentially more. The peak of growth hormone levels seems to be typically achieved within 1 to 4 hours following introduction. Furthermore, CJC-1295 may exhibit observable dependent increases in mean plasma IGF-I concentrations by 1.5- to 3-fold for possibly 9–11 days.[5] Post introduction, it is suggested that IGF-I levels could remain elevated for at least 2 weeks in test models receiving greater exposure. Following multiple presentations of CJC-1295, mean IGF-I levels appear to stay above baseline for up to 28 days. Intriguingly, there appears to be data of a cumulative action after two or three presentations to the compound, with possibly elevated levels of both growth hormone and IGF-I above baseline on day 14 in many laboratory subjects. CJC-1295 may upregulate IGF-1 through an increase in growth hormone, which may then bind to specific receptors on liver cells, potentially initiating a series of intracellular signaling events. The binding of growth hormone possibly triggers the activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. The activated STAT proteins may then translocate to the nucleus, where they could bind to specific DNA sequences called response elements, possibly leading to the transcription of the IGF-I gene. The newly synthesized IGF-I is then hypothesized to be released into the circulation, where it may act upon various target tissues. IGF-I, it appears, could be a potent growth-promoting hormone that hypothetically mediates several of the growth and anabolic action of growth hormone. It is proposed to stimulate the growth and proliferation of cells, tissues, and organs, potentially fostering protein synthesis and cellular growth.

Disclaimer: The products mentioned are not intended for human or animal consumption. Research chemicals are intended solely for laboratory experimentation and/or in-vitro testing. Bodily introduction of any sort is strictly prohibited by law. All purchases are limited to licensed researchers and/or qualified professionals. All information shared in this article is for educational purposes only.

 

References

  1. Jetté, L., Léger, R., Thibaudeau, K., Benquet, C., Robitaille, M., Pellerin, I., Paradis, V., van Wyk, P., Pham, K., & Bridon, D. P. (2005). Human growth hormone-releasing factor (hGRF)1-29-albumin bioconjugates activate the GRF receptor on the anterior pituitary in rats: identification of CJC-1295 as a long-lasting GRF analog. Endocrinology146(7), 3052–3058. https://doi.org/10.1210/en.2004-1286
  2. Martin, B., Lopez de Maturana, R., Brenneman, R., Walent, T., Mattson, M. P., & Maudsley, S. (2005). Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular medicine7(1-2), 3–36. https://doi.org/10.1385/nmm:7:1-2:003
  3. Newton, A. C., Bootman, M. D., & Scott, J. D. (2016). Second Messengers. Cold Spring Harbor perspectives in biology8(8), a005926. https://doi.org/10.1101/cshperspect.a005926
  4. Ionescu, M., & Frohman, L. A. (2006). Pulsatile secretion of growth hormone (GH) persists during continuous stimulation by CJC-1295, a long-acting GH-releasing hormone analog. The Journal of clinical endocrinology and metabolism91(12), 4792–4797. https://doi.org/10.1210/jc.2006-1702
  5. Teichman, S. L., Neale, A., Lawrence, B., Gagnon, C., Castaigne, J. P., & Frohman, L. A. (2006). Prolonged stimulation of growth hormone (GH) and insulin-like growth factor I secretion by CJC-1295, a long-acting analog of GH-releasing hormone, in healthy adults. The Journal of clinical endocrinology and metabolism91(3), 799–805. https://doi.org/10.1210/jc.2005-1536
  6. Childs, M. D., & Luyt, L. G. (2020). A Decade’s Progress in the Development of Molecular Imaging Agents Targeting the Growth Hormone Secretagogue Receptor. Molecular imaging19, 1536012120952623. https://doi.org/10.1177/1536012120952623
  7. Yin, Y., Li, Y., & Zhang, W. (2014). The growth hormone secretagogue receptor: its intracellular signaling and regulation. International journal of molecular sciences15(3), 4837–4855. https://doi.org/10.3390/ijms15034837
  8. Bill, C. A., & Vines, C. M. (2020). Phospholipase C. Advances in experimental medicine and biology1131, 215–242. https://doi.org/10.1007/978-3-030-12457-1_9
  9. Sinha, D. K., Balasubramanian, A., Tatem, A. J., Rivera-Mirabal, J., Yu, J., Kovac, J., Pastuszak, A. W., & Lipshultz, L. I. (2020). Beyond the androgen receptor: the role of growth hormone secretagogues in the modern management of body composition in hypogonadal males. Translational andrology and urology9(Suppl 2), S149–S159. https://doi.org/10.21037/tau.2019.11.30
  10. Sigalos, J. T., & Pastuszak, A. W. (2018). The Safety and Efficacy of Growth Hormone Secretagogues. Sexual medicine reviews6(1), 45–53. https://doi.org/10.1016/j.sxmr.2017.02.004

Reviews

There are no reviews yet.

Be the first to review “CJC 1295 – 5MG”

Your email address will not be published. Required fields are marked *